Indian Statistical Institute, Bangalore

B.Math (Hons.) I Year, Second Semester Semestral Examination Real Analysis II, Back Paper July 18, 2011 In

Time: 3 hours

Instructor: C.R.E.Raja Maximum marks: 50

Each question is worth 10 Marks

- 1. Let E be a subset of a metric space X. Prove that (a) $\overline{E} = E' \cup E$, (b) \overline{E} is a closed set and (c) \overline{E} is the intersection of all closed sets in X containing E.
- 2. Let (X, d) be a discrete metric space.

(a) Suppose (a_n) is a convergent sequence in X. Prove that there is a $N \ge 1$ such that $a_n = a_m$ for all $n, m \ge N$

(b) Prove that a subset K of X is compact if and only if K is finite.

(c) Prove that a non-empty subset E of X is connected if and only if E is singleton.

- 3. (a) If $f, g \in \mathcal{R}[a, b]$, then prove that $f + g \in \mathcal{R}[a, b]$ and $\int_a^b (f + g) = \int_a^b f + \int_a^b g$. (b) If $f: [a, b] \to \mathbb{R}$ is a monotonic function, then prove that $f \in \mathcal{R}[a, b]$.
- 4. (a) Let f, g ∈ R[a, b] and g(x) ≥ 0 for all x ∈ [a, b]. Prove that there is a s ∈ R such that ∫_a^b fg = s ∫_a^b g and inf_{x∈[a,b]} f(x) ≤ s ≤ sup_{x∈[a,b]} f(x).
 (b) Let f: ℝ^k → ℝ^k be a differentiable function. Prove that f is continuous.
- 5. (a) Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a differentiable function and $x, y \in \mathbb{R}^n$. Prove that there is a z on the line segment joining x and y such that f(y) - f(x) = f'(z)(y - x). (b) Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function and $u \in \mathbb{R}^n$ be such that ||u|| = 1. Prove that $\lim_{t\to 0} \frac{f(x+tu)-f(x)}{t}$ exists and equal to $\sum_{i=1}^n D_i f(x) u_i$ where u_i is the *i*-th co-ordinate of u.